Engineers, Planners \& Landscape Architects

Engineering

Land / Site
Development
Municipal
Infrastructure
Environmental /
Water Resources
Traffic /
Transportation
Structural
Recreational
Planning
Land / Site
Development
Planning Application
Management
Municipal Planning
Documents \&
Studies
Expert Witness (OMB)
Wireless Industry

Landscape

Architecture
Urban Design \&
Streetscapes
Open Space, Parks \&
Recreation Planning
Community \&
Residential
Developments
Commercial \&
Institutional Sites
Environmental
Restoration

Dutch Meadows Subdivision Municipality of South Dundas County of Dundas

Traffic Impact Study

Dutch Meadows Subdivision Part of Lots 34 and 35, Concession 1 Geographic Township of Williamsburgh, Municipality of South Dundas, County of Dundas

TRAFFIC IMPACT STUDY

Prepared By:
NOVATECH
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario K2M 1P6

August 2018
Novatech File: 118063
Ref No. R-2018-105

Engineers, Planners \& Landscape Architects

August $1^{\text {st }}, 2018$

Swank Construction Ltd. c/o Mr. Robert (Jack) Sullivan 10781 Highway 2 Iroquois, Ontario K0E 1K0

Attention: Mr. Ronald Swank

Dear Sir:
Reference: Dutch Meadows Draft Plan of Subdivision
Part of Lots 34 and 35, Concession 1, Municipality of South Dundas
Traffic Impact Study
Our File No. 118063
The following Traffic Impact Study has been prepared in support of a Draft Plan of Subdivision application for the above lands located west of Morrisburg.

If you have any questions as you complete your review, please do not hesitate to contact the undersigned.

Yours truly,

NOVATECH

Brad Byvelds, P. Eng.
Project Coordinator | Transportation/Traffic

TABLE OF CONTENTS

EXECUTIVE SUMMARY I
1.0 INTRODUCTION 1
1.1 Proposed Development 1
1.2 Analysis Methods 2
1.3 ANaLYSis Parameters 2
2.0 EXISTING CONDITIONS 3
2.1 Roadways and Intersections 3
2.2 Existing Traffic Volumes 3
3.0 TRAVEL DEMAND FORECASTING 4
3.1 Background Growth 4
3.2 Trip Generation 5
3.3 TRIP DISTRIBUTION 6
4.0 INTERSECTION CAPACITY ANALYSIS 8
4.1 EXISTING INTERSECTION OpERATIONS 8
4.22022 Background Traffic Intersection Operations 9
4.32029 Background Traffic Intersection Operations 9
4.42022 Total Traffic Intersection Operations 9
4.52029 Total Traffic Intersection Operations 10
5.0 ACCESS DESIGN 11
6.0 CONCLUSIONS AND RECOMMENDATIONS. 12

Figures

Figure 1: Aerial Photo of Dutch Meadows Subdivision 1
Figure 2: Aerial Photo of County Road 2/Steward Drive Intersection 3
Figure 3: Existing Traffic Volumes 4
Figure 4: 2022 Background Traffic Volumes 4
Figure 5: 2029 Background Traffic Volumes 5
Figure 6: Phase 1 Interim Site Traffic 6
Figure 7: Build-out Site Traffic 7
Figure 8: 2022 Total Traffic Volumes 7
Figure 9: 2029 Total Traffic 8
Figure 10: County Road 2 Access Intersection Sight Distance 11
Figure 11: Steward Drive Access Intersection Sight Distance 12
Tables
Table 1: HCM Criteria for LOS 2
Table 2: ITE Trip Generation 5
Table 3: Existing Intersection Operations 8
Table 4: 2022 Background Traffic Intersection Analysis 9
Table 5: 2029 Background Traffic Intersection Analysis 9
Table 6: 2022 Total Traffic Intersection Analysis 10
Table 7: 2029 Total Traffic Intersection Analysis 10
Table 8: Intersection Sight Distance 11
Appendices
Appendix A: Proposed Draft Plan of Subdivision
Appendix B: Traffic Count Information
Appendix C: Synchro Analysis Reports
Appendix D: MTO Left Turn Lane Graphs
Appendix E: Relevant Excerpts from TAC Geometric Design Guidelines

EXECUTIVE SUMMARY

The following Traffic Impact Study (TIS) has been prepared in support of a Draft Plan of Subdivision application for Part of Lots 34 and 35 of Concession 1 in the Geographic Township of Williamsburgh, Municipality of South Dundas, County of Dundas. The aforementioned lands will henceforth be referred to as the 'Dutch Meadows Subdivision', and are located west of Morrisburg.

The Dutch Meadows Subdivision will contain a total of 58 single detached dwelling units, 23 semidetached housing units, 24 seniors single detached housing units and 48 condominium units. It is noteworthy that 22 of the single detached dwelling unit lots may become seniors detached housing unit lots, depending on market demands.

The Dutch Meadows Subdivision is anticipated to commence construction in 2019, and is anticipated to be built-out in four phases over a ten year period. The proposed subdivision will ultimately be served by a primary access along County Road 2 and a secondary access along Steward Drive. Phase 1 of the subdivision will temporarily be served by the Steward Drive access exclusively, while construction traffic will use the County Road 2 access. Following the construction of Phase 1, the County Road 2 access is anticipated to be opened to the public and the development will be served by both accesses.

This TIS has been prepared to provide an assessment of the development proposal. The methodologies used to analyze the transportation impacts of the proposed development are described as follows:

- Estimation of trips generated by the proposed subdivision;
- An operational evaluation of the study area intersections under the existing conditions;
- An operational evaluation of the accesses and study area intersections under background and total traffic conditions for the 2022 Phase 1 build-out and 2029 ultimate build-out year;
- A review of turn lane requirements at the accesses and study area intersections; and
- A review of the intersection sight distance at the proposed subdivision accesses.

The study area for this report includes the proposed access intersections as well as the County Road 2/Steward Drive intersection.

The selected time periods for the analysis are the weekday AM and PM peak hours. These peak hours are considered to represent the 'worst case' combination of site generated traffic and adjacent street traffic. Traffic conditions within the study area have been analyzed for the existing, and background and total traffic conditions for the 2022 Phase 1 build-out and 2029 ultimate buildout year.

The main conclusions and recommendations of this report are as follows:

- Phase 1 of the subdivision will temporarily be served by the Steward Drive access exclusively, while construction traffic will use the County Road 2 access. Following the construction of Phase 1, the County Road 2 access is anticipated to be opened to the public and the development will be served by both accesses.
- Phase 1 of the subdivision is anticipated to generate a total of 54 vehicle trips during the weekday AM peak hour and 61 vehicle trips during the weekday PM peak hour. At build-
out, the proposed subdivision is anticipated to generate a total of 95 vehicle trips during the weekday AM peak hour and 124 vehicle trips during the weekday PM peak hour at full build-out.
- Under existing/background traffic conditions, the County Road 2/Steward Drive intersection is anticipated to operate with a LOS A during the weekday AM and PM peak hours. A westbound left turn lane will not be warranted at this intersection.
- Under 2022 total traffic conditions (Phase 1 build-out), the County Road 2/Steward Drive intersection and Steward Drive access are anticipated to operate with a LOS A during the weekday AM and PM peak hours. A westbound left turn lane will not be warranted at the County Road 2/Steward Drive intersection.
- Under the 2029 total traffic conditions (ultimate build-out), the County Road 2/Steward Drive intersection and both accesses are anticipated to operate with a LOS B or better during the weekday AM and PM peak hours. A westbound left turn lane will not be warranted at either the County Road 2/Steward Drive intersection or the County Road 2 access. An eastbound right turn taper is not recommended at the proposed County Road 2 access.
- The required intersection sight distance for a passenger vehicle to exit left or right from the two accesses is achieved.

1.0 INTRODUCTION

The following Traffic Impact Study (TIS) has been prepared in support of a Draft Plan of Subdivision application for Part of Lots 34 and 35 of Concession 1 in the Geographic Township of Williamsburgh, Municipality of South Dundas, County of Dundas. The aforementioned lands will henceforth be referred to as the 'Dutch Meadows Subdivision', and are located west of Morrisburg. An aerial photo of the Dutch Meadows Subdivision is shown in Figure 1.

Figure 1: Aerial Photo of Dutch Meadows Subdivision

1.1 Proposed Development

The Dutch Meadows Subdivision will contain a total of 58 single detached dwelling units, 23 semidetached housing units, 24 seniors single detached housing units and 48 condominium units. It is noteworthy that 22 of the single detached dwelling unit lots may become seniors detached housing unit lots, depending on market demands. A copy of the proposed Draft Plan of Subdivision is included in Appendix A.

The Dutch Meadows Subdivision is anticipated to commence construction in 2019, and is anticipated to be built-out in four phases over a ten year period. The proposed subdivision will ultimately be served by a primary access along County Road 2 and a secondary access along Steward Drive. Phase 1 of the subdivision will temporarily be served by the Steward Drive access exclusively, while construction traffic will use the County Road 2 access. Following the construction of Phase 1, the County Road 2 access is anticipated to be opened to the public and the development will be served by both accesses.

1.2 Analysis Methods

Intersection capacity analysis has been completed using the software package Synchro 10. This software uses methodology from the Highway Capacity Manual 2010 (HCM), published by the Transportation Research Board, to evaluate signalized and unsignalized intersections.

Operating conditions at the accesses and the study area intersections have been evaluated in terms of a delay and a Level of Service (LOS). LOS is a qualitative measure describing the operating conditions within a traffic stream. Letters are assigned to six levels, with a LOS A representing optimal operating conditions and LOS F representing failing operating conditions.

The HCM relates the LOS for individual movements at an unsignalized intersection to average control delay. The HCM criteria are as follows:

Table 1: HCM Criteria for LOS

LOS	Delay (sec/veh)
A	<10
B	10 to 15
C	15 to 25
D	25 to 35
E	35 to 50
F	>50

This TIS has been prepared to provide an assessment of the development proposal. The methodologies used to analyze the transportation impacts of the proposed development are described as follows:

- Estimation of trips generated by the proposed subdivision;
- An operational evaluation of the study area intersections under the existing conditions;
- An operational evaluation of the accesses and study area intersections under background and total traffic conditions for the 2022 Phase 1 build-out and 2029 ultimate build-out year;
- A review of turn lane requirements at the accesses and study area intersections; and
- A review of the intersection sight distance at the proposed subdivision accesses.

1.3 Analysis Parameters

The study area for this report includes the proposed access intersections as well as the County Road 2/Steward Drive intersection.

The selected time periods for the analysis are the weekday AM and PM peak hours. These peak hours are considered to represent the 'worst case' combination of site generated traffic and adjacent street traffic. Traffic conditions within the study area have been analyzed for the existing, and background and total traffic conditions for the 2022 Phase 1 build-out and 2029 ultimate buildout year.

2.0 EXISTING CONDITIONS

2.1 Roadways and Intersections

County Road 2 generally runs on an east-west alignment and has a two-lane undivided rural cross section with a posted speed limit of $80 \mathrm{~km} / \mathrm{hr}$ within the study area.

Steward Drive generally runs on a north-south alignment and has a two-lane undivided rural cross section with a posted speed limit of $50 \mathrm{~km} / \mathrm{hr}$.

The County Road 2/Steward Drive intersection currently has one lane approaches on all legs. A 40 m eastbound right turn taper is provided, however it is painted as a paved shoulder. This intersection currently operates under side street stop control. An aerial photo of this intersection is provided in Figure 2.

Figure 2: Aerial Photo of County Road 2/Steward Drive Intersection

2.2 Existing Traffic Volumes

A weekday traffic count was commissioned by Novatech at the County Road 2/Steward Drive intersection and was completed on Wednesday April 18 ${ }^{\text {th }}$, 2018. Peak hour summary sheets of the traffic count are included in Appendix B. The weekday AM and PM peak hour traffic volumes at the County Road 2/Steward Drive intersection are shown in Figure 3.

Figure 3: Existing Traffic Volumes

3.0 TRAVEL DEMAND FORECASTING

3.1 Background Growth

Historical Annual Average Daily Traffic (AADT) counts along County Road 2 between Merkley Drive and County Road 31 were obtained from the Counties of Stormont, Dundas, and Glengarry. Based on the AADT counts, traffic along County Road 2 grew at a rate of 2% per annum between 2012 and 2016.

For the purposes of this analysis, a compound annual growth rate of 2% per annum has been applied to the existing through traffic volumes along County Road 2. Background traffic volumes along the study area roadways for the 2022 Phase 1 build-out and 2029 ultimate build-out year are shown in Figure 4 and 5 respectively.

Figure 4: 2022 Background Traffic Volumes

Figure 5: 2029 Background Traffic Volumes

3.2 Trip Generation

The Dutch Meadows Subdivision will contain a total of 58 single detached dwelling units, 23 semidetached housing units, 24 seniors single detached housing units and 48 condominium units. As identified above, depending on market demand 22 of the single detached dwelling unit lots may become seniors detached housing unit lots. For the purposes of this analysis, it has been conservatively assumed that these lots will contain single detached housing units.

Trips generated by the proposed subdivision have been estimated using relevant rates identified in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9 ${ }^{\text {th }}$ Edition. Trips generated by the Dutch Meadows Subdivision are summarized in the following table.

Table 2: ITE Trip Generation

Land Use	ITE Code	Units	AM Peak			PM Peak		
			In	Out	Total	In	Out	Total
Phase 1								
Single Detached Housing Units	210	15	5	15	20	12	7	19
Senior Adult Housing Detached	251	6	1	1	2	3	2	5
Residential Condominium/ Townhouse	230	55	5	27	32	25	12	37
Total			11	43	54	40	21	61
Build-out								
Single Detached Housing Units	210	58	13	37	50	40	24	64
Senior Adult Housing Detached	251	24	2	4	6	9	6	15
Residential Condominium/ Townhouse	230	71	7	32	39	30	15	45
		Total	22	73	95	79	45	124

Based on the foregoing, Phase 1 of the subdivision is anticipated to generate a total of 54 vehicle trips during the weekday AM peak hour and 61 vehicle trips during the weekday PM peak hour. At
build-out, the proposed subdivision is anticipated to generate a total of 95 vehicle trips during the weekday AM peak hour and 124 vehicle trips during the weekday PM peak hour at full build-out.

3.3 Trip Distribution

The distribution of trips generated by the subdivision has been derived based on the existing traffic patterns along County Road 2. The assumed distribution of trips generated by the subdivision is summarized as follows:

- 80% to/from the east via County Road 2; and
- 20% to/from the west via County Road 2.

As described above Phase 1 will temporarily be served by the Steward Drive access exclusively, while construction traffic will use the County Road 2 access. Following the construction of Phase 1, the County Road 2 access is anticipated to be opened to the public and the development will be served by both accesses. At full build-out of the subdivision, approximately 70% of the traffic arriving/departing to/from the east are anticipated to use the County Road 2 access, and the remaining 30\% are anticipated to use the Steward Drive access.

Trips generated by Phase 1 of the subdivision are shown in Figure 6. This will be an interim condition until the County Road 2 access is constructed as part of future phases. Trips generated at full build-out of the proposed subdivision are shown in the Figure 7. Total traffic volumes for the 2022 Phase 1 build-out and 2029 ultimate build-out year are shown in Figure 8 and 9 respectively.

Figure 6: Phase 1 Interim Site Traffic

Figure 7: Build-out Site Traffic

Figure 8: 2022 Total Traffic Volumes

Figure 9: 2029 Total Traffic

4.0 INTERSECTION CAPACITY ANALYSIS

4.1 Existing Intersection Operations

Intersection capacity analysis has been completed for the existing traffic conditions. The lane configurations at the study area intersections are based on the existing geometry, as described in Section 2.1. The results of the Synchro analysis are summarized in the following table for the weekday AM and PM peak hours. Detailed reports are included in Appendix C.

Table 3: Existing Intersection Operations

Intersection	AM Peak			PM Peak		
	Critical Delay	LOS	Movement	Critical Delay	LOS	Movement
County Road 2/ Steward Drive	9 sec	A	NB	9 sec	A	NB

Based on the foregoing, the County Road 2/Steward Drive intersection is currently operating with a LOS A during the weekday AM and PM peak hours. A review of Ministry of Transportation of Ontario (MTO) left turn lane graphs have been completed to determine if a westbound left turn lane is warranted along County Road 2 at Steward Drive. Based on the MTO left turn lane graphs, a westbound left turn lane is not warranted at this location. A Copy of the MTO left turn lane graph is included in Appendix D.

4.2 2022 Background Traffic Intersection Operations

Intersection capacity analysis has been completed for the 2022 background traffic conditions. The lane configurations at the County Road 2/Steward Drive intersection are based on the existing geometry, as described in Section 2.1. The results of the Synchro analysis are summarized in the following table for the weekday AM and PM peak hours. Detailed reports are included in Appendix C.

Table 4: 2022 Background Traffic Intersection Analysis

Intersection	AM Peak			PM Peak		
	Critical Delay	LOS	Movement	Critical Delay	LOS	Movement
County Road 2/ Steward Drive	9 sec	A	NB	9 sec	A	NB

Based on the foregoing, the County Road 2/Steward Drive intersection will continue to operate with a LOS A under the 2022 background traffic conditions. Based on the MTO left turn lane graphs a westbound left turn lane will not be warranted along County Road 2 at Steward Drive. A copy of the MTO left turn lane graph is included in Appendix \mathbf{D}.

4.3 2029 Background Traffic Intersection Operations

Intersection capacity analysis has been completed for the 2029 background traffic conditions. The lane configurations at the County Road 2/Steward Drive intersection are based on the existing geometry, as described in Section 2.1. The results of the Synchro analysis are summarized in the following table for the weekday AM and PM peak hours. Detailed reports are included in Appendix C.

Table 5: 2029 Background Traffic Intersection Analysis

Intersection	AM Peak			PM Peak		
	Critical Delay	LOS	Movement	Critical Delay	LOS	Movement
County Road 2/ Steward Drive	10 sec	A	NB	9 sec	A	NB

Based on the foregoing, the County Road 2/Steward Drive intersection will continue to operate with a LOS A under the 2029 background traffic conditions. Based on the MTO left turn lane graphs a westbound left turn lane will not be warranted along County Road 2 at Steward Drive. A copy of the MTO left turn lane graph is included in Appendix \mathbf{D}.

4.4 2022 Total Traffic Intersection Operations

Intersection capacity analysis has been completed for the 2022 total traffic conditions. For the purposes of this analysis, it has been assumed that the Steward Drive access will operate under side street stop control.

Based on the MTO left turn lane graphs, a westbound left turn lane will not be warranted along County Road 2 at Steward Drive under the interim condition.

The results of the Synchro analysis are summarized in the following table for the weekday AM and PM peak hours. Detailed reports are included in Appendix C.

Table 6: 2022 Total Traffic Intersection Analysis

Intersection	AM Peak			PM Peak		
	Critical Delay	LOS	Movement	Critical Delay	LOS	Movement
County Road 2/ Steward Drive	10 sec	A	NB	10 sec	A	NB
Steward Drive/ Access	9 sec	A	EB	9 sec	A	EB

4.5 2029 Total Traffic Intersection Operations

Intersection capacity analysis has been completed for the 2029 total traffic conditions. For the purposes of this analysis, it has been assumed that the two accesses will operate under side street stop control. Based on the MTO left turn lane graphs, a westbound left turn lane will not be warranted along County Road 2 at either Steward Drive or the proposed access.

Transportation Association of Canada (TAC) Geometric Design Guidelines for Canadian Roads suggest right turn tapers should be considered at unsignalized intersections when the volume of decelerating vehicles compared with the through traffic volumes cause undue hazard. Based on the traffic projections, approximately 15 vehicles are anticipated to perform the eastbound right turn movement at the County Road 2 access during the weekday PM peak hour, equating to approximately one vehicle every four minutes. The eastbound right turning volumes also equate to less than 10% of the approach volumes during the weekday AM and PM peak hours. Based on the foregoing, the eastbound right turning volumes at the County Road 2 access are not anticipated to cause undue hazard and an eastbound right turn taper is not recommended.

The results of the Synchro analysis are summarized in the following table for the weekday AM and PM peak hours. Detailed reports are included in Appendix C.

Table 7: 2029 Total Traffic Intersection Analysis

Intersection	AM Peak			PM Peak		
	Critical Delay	LOS	Movement	Critical Delay	LOS	Movement
County Road 2/ Steward Drive	10 sec	A	NB	9 sec	A	NB
County Road 2/ Access	10 sec	B	NB	10 sec	B	NB
Steward Access	9 sec	A	EB	9 sec	A	EB

5.0 ACCESS DESIGN

The proposed subdivision will be served by two access roadways, one along County Road 2 opposite a field access to the property to the north, and the other along Steward Drive opposite a pedestrian pathway between Steward Drive and Fairholme Drive.

Intersection sight distance (ISD) at the proposed subdivision accesses has been determined using TAC guidelines. The ISD to turn left or right from a minor road onto a major road is calculated using TAC Equation 9.9.1 (ISD $=0.278^{*} \mathrm{~V}_{\text {Major }}{ }^{*} \mathrm{t}_{\mathrm{g}}$). The ISD at the proposed accesses is summarized in the following table. Relevant excerpts from TAC are included in Appendix E.

Table 8: Intersection Sight Distance

Location	Movement	Design Speed 1	Time Gap²	Calculated	Rounded
County Road 2 Access	Left Turn from Minor Road	$100 \mathrm{~km} / \mathrm{hr}$	7.5 seconds	208.5 metres	210 metres
	Right Turn from Minor Road		180.7 metres	185 metres	
	Left Turn from Minor Road	$70 \mathrm{~km} / \mathrm{hr}$	7.5 seconds	146 metres	150 metres
	Right Turn from Minor Road		126.5 metres	130 metres	

1. Design Speed $=10 \mathrm{~km} / \mathrm{hr}$ above the posted speed limit
2. Time gaps based on TAC Tables 9.9.3 and 9.9.5

County Road 2 does not have significant horizontal or vertical curvature in the vicinity of the access, and the required sight distance is achieved. The required ISD for passenger vehicles to turn left or right from the proposed County Road 2 access is shown in Figure 7.

Figure 10: County Road 2 Access Intersection Sight Distance

Steward Drive north of the proposed access does not have significant horizontal or vertical curvature, however there is a horizontal curve to the south. The required ISD for passenger vehicles to turn left or right from the proposed Steward Drive access is shown in Figure 8.

Figure 11: Steward Drive Access Intersection Sight Distance

As demonstrated in the above figures, the required ISD for a passenger vehicle to exit left or right from the two accesses is achieved.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the foregoing, the main conclusions and recommendations of this report are as follows:

- Phase 1 of the subdivision will temporarily be served by the Steward Drive access exclusively, while construction traffic will use the County Road 2 access. Following the construction of Phase 1, the County Road 2 access will be opened to the public and the development will be served by both accesses.
- Phase 1 of the subdivision is anticipated to generate a total of 54 vehicle trips during the weekday AM peak hour and 61 vehicle trips during the weekday PM peak hour. At buildout, the proposed subdivision is anticipated to generate a total of 95 vehicle trips during the weekday AM peak hour and 124 vehicle trips during the weekday PM peak hour at full build-out.
- Under existing/background traffic conditions, the County Road 2/Steward Drive intersection is anticipated to operate with a LOS A during the weekday AM and PM peak hours. A westbound left turn lane will not be warranted at this intersection.
- Under 2022 total traffic conditions (Phase 1 build-out), the County Road 2/Steward Drive intersection and Steward Drive access are anticipated to operate with a LOS A during the weekday AM and PM peak hours. A westbound left turn lane will not be warranted at the County Road 2/Steward Drive intersection.
- Under the 2029 total traffic conditions (ultimate build-out), the County Road 2/Steward Drive intersection and both accesses are anticipated to operate with a LOS B or better during the weekday AM and PM peak hours. A westbound left turn lane will not be warranted at either the County Road 2/Steward Drive intersection or the County Road 2 access. An eastbound right turn taper is not recommended at the proposed County Road 2 access.
- The required intersection sight distance for a passenger vehicle to exit left or right from the two accesses is achieved.

NOVATECH

Prepared by:

Brad Byvelds, P. Eng.
Project Coordinator | Transportation/Traffic

Appendix A

Proposed Draft Plan of Subdivision

Appendix B

Traffic Count Information

Turning Movement Count Summary, AM and PM Peak Hour Automobiles, Taxis, Light Trucks, Vans, SUV's,

Flow Diagrams
Motorcycles, Heavy Trucks,
Buses, and School Buses

County Road 2 \& Steward Drive

Morrisburg, ON

Appendix C

Synchro Analysis Reports

Intersection						
Int Delay, slveh	0.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	T			\uparrow	KP	
Traffic Vol, veh/h	116	5	5	134	4	14
Future Vol, veh/h	116	5	5	134	4	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	4	0	0	5	0	0
Mvmt Flow	129	6	6	149	4	16

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	T			\uparrow	Mr	
Traffic Vol, veh/h	121	1	14	189	0	10
Future Vol, veh/h	121	1	14	189	0	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	4	0	0	5	0	0
Mvmt Flow	134	1	16	210	0	11

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	T			\uparrow	Mr	
Traffic Vol, veh/h	126	5	5	145	4	14
Future Vol, veh/h	126	5	5	145	4	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	4	0	0	5	0	0
Mvmt Flow	140	6	6	161	4	16

Intersection							
Int Delay, s/veh	0.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	t			\uparrow	*		
Traffic Vol, veh/h	131	1	14	205	0	10	
Future Vol, veh/h	131	1	14	205	0	10	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	-
Veh in Median Storage, \#	0	-	-	0	0	-	-
Grade, \%	0	-	-	0	0	-	-
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, \%	4	0	0	5	0	0	0
Mvmt Flow	146	1	16	228	0	11	

Intersection						
Int Delay, slveh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	KP	
Traffic Vol, veh/h	144	5	5	167	4	14
Future Vol, veh/h	144	5	5	167	4	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	4	0	0	5	0	0
Mvmt Flow	160	6	6	186	4	16

Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	t			\mathbf{A}	Tr)	
Traffic Vol, veh/h	150	1	14	235	0	10
Future Vol, veh/h	150	1	14	235	0	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	4	0	0	5	0	0
Mvmt Flow	167	1	16	261	0	11

Intersection						
Int Delay, s/veh	2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	T			\uparrow	Mr	
Traffic Vol, veh/h	126	7	14	145	13	48
Future Vol, veh/h	126	7	14	145	13	48
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	4	0	0	5	0	0
Mvmt Flow	140	8	16	161	14	53

Intersection						
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	T			AT	Fr	
Traffic Vol, veh/h	133	0	0	158	0	0
Future Vol, veh/h	133	0	0	158	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, $\%$	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	148	0	0	176	0	0

Intersection						
Int Delay, s/veh	4.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	RT			\neq	T	
Traffic Vol, veh/h	43	0	0	18	10	11
Future Vol, veh/h	43	0	0	18	10	11
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	48	0	0	20	11	12

Intersection						
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	t			AT	Tr)	
Traffic Vol, veh/h	140	0	0	209	0	0
Future Vol, veh/h	140	0	0	209	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	156	0	0	232	0	0

Intersection						
Int Delay, s/veh 2.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	ち	
Traffic Vol, veh/h	21	0	0	10	15	40
Future Vol, veh/h	21	0	0	10	15	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	23	0	0	11	17	44

Intersection						
Int Delay, s/veh	1.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	*	
Traffic Vol, veh/h	149	5	12	171	15	40
Future Vol, veh/h	149	5	12	171	15	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	166	6	13	190	17	44

Intersection							
Int Delay, s/veh	3.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*/			\uparrow	个		
Traffic Vol, veh/h	18	0	0	18	10	5	5
Future Vol, veh/h	18	0	0	18	10	5	5
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-	-
Grade, \%	0	-	-	0	0	-	-
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, \%	2	2	2	2	2	2	2
Mvmt Flow	20	0	0	20	11	6	6

Intersection							
Int Delay, s/veh	0.9						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	t			\uparrow	*		
Traffic Vol, veh/h	175	1	33	279	0	21	1
Future Vol, veh/h	175	1	33	279	0	21	1
Conflicting Peds, \#/hr	0	0	0	0	0		0
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0		-
Veh in Median Storage, \#	0	-	-	0	0		-
Grade, \%	0	-	-	0	0		-
Peak Hour Factor	90	90	90	90	90	90	0
Heavy Vehicles, \%	4	0	0	5	0		0
Mvmt Flow	194	1	37	310	0	23	3

Intersection						
Int Delay, s/veh	1.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	$\mathbf{7}$	
Traffic Vol, veh/h	11	0	0	10	15	19
Future Vol, veh/h	11	0	0	10	15	19
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	12	0	0	11	17	21

Appendix D

MTO Left Turn Lane Graphs

Figure EA-22

Figure EA-22

Figure EA-22

Figure EA-22

-an TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW
TRAFFIC SIGNALS MAY BE WARRANTED IN
"free flow" urban areas

- PM Peak

Figure EA-23

Figure EA-22

Figure EA-22

Figure EA-23

Appendix E

Relevant Excerpts from TAC Geometric Design Guidelines

Table 9.9.3: Time Gap for Case B1, Left Turn from Stop

Design Vehicle	Time Gap $\left(t_{\boldsymbol{t}}\right)(\boldsymbol{s})$ at Design Speed of Major Road
Passenger car	7.5
Single-unit truck	9.5
Combination truck (WB 19 and WB 20)	11.5
Longer truck	To be established by road authority

Notes: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3% or less. The table values should be adjusted as follows:

- For multi-lane highways: For left turns onto two-lane highways with more than two lanes, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.
- For minor approach grades: If the approach grade is an upgrade that exceeds 3%, add 0.2 s for each percent grade for left turns.
- Some road authorities use higher values for certain specialized vehicles (e.g., Alberta uses 22 s for very long log trucks).

The intersection sight distance along the major road (distance b in Figure 9.9.2) is determined by:

$$
\begin{equation*}
\text { ISD }=0.278 \mathrm{~V}_{\text {major }} t_{\mathrm{g}} \tag{9.9.1}
\end{equation*}
$$

Where:

$$
\begin{aligned}
I S D= & \text { intersection sight distance (length of the leg } \\
& \text { of sight triangle along the major road) }(\mathrm{m}) \\
V_{\text {major }}= & \text { design speed of the major road }(\mathrm{km} / \mathrm{h}) \\
t_{\mathrm{g}}= & \text { time gap for minor road vehicle to enter the } \\
& \text { major road }(\mathrm{s})
\end{aligned}
$$

For example, a passenger car turning left onto a two-lane major road should be provided sight distance equivalent to a time gap of 7.5 s in major-road traffic. If the design speed of the major road is $100 \mathrm{~km} / \mathrm{h}$, this corresponds to a sight distance of $0.278(100)(7.5)=208.5$ or 210 m , rounded for design.

A passenger car turning left onto a four-lane undivided roadway will need to cross two near lanes, rather than one. This increases the recommended gap in major-road traffic from 7.5 to 8.0 s . The corresponding value of sight distance for this example would be 223 m . If the minor-road approach to such an intersection is located on a 4% upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s , equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9.9.4. Figure 9.9.4 includes design values, based on the time gaps for the design vehicles included in Table 9.9.3.

No adjustment of the recommended sight distance values for the major-road grade is generally needed because both the major-and minor-road vehicle will be on the same grade when departing from the intersection. However, if the minor-road design vehicle is a heavy truck and the intersection is located near a sag vertical curve with grades over 3%, then an adjustment to extend the recommended sight distance based on the major-road grade should be considered.

Table 9.9.4: Design Intersection Sight Distance - Case B1, Left Turn From Stop

Design Speed $(\mathbf{k m} / \mathrm{h})$	Stopping Sight Distance (\mathbf{m})	Intersection Sight Distance for Passenger Cars Calculated (m)	
20	20	41.7	Design (\mathbf{m})
30	35	62.6	45
40	50	83.4	65
50	65	104.3	85
60	85	125.1	105
70	105	146.0	130
80	130	166.8	150
90	160	187.7	170
100	185	208.5	190
110	220	229.4	210
120	250	250.2	230
130	285	271.1	255

Note: Intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3% or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.

Sight distance design for left turns at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided-highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehicle with a clearance to the through lanes of approximately 1 m at both ends of the vehicle, no separate analysis for the departure sight triangle for left turns is needed on the minor-road approach for the near roadway to the left. In most cases, the departure sight triangle for right turns (case $B 2$) will provide sufficient sight distance for a passenger car to cross the near roadway to reach the median. Possible exceptions are addressed in the discussion of case B3.

The time gaps in Table 9.9 .3 can be decreased by 1.0 s for right-turn maneuvers without undue interference with major-road traffic. These adjusted time gaps for the right turn from the minor road are shown in Table 9.9.5. Design values based on these adjusted time gaps are shown in Table 9.9.6 for passenger cars. Figure 9.9.5 includes the design values for the design vehicles for each of the time gaps in Table 9.9.5.

Table 9.9.5: Time Gap for Case B2—Right Turn from Stop and Case B3-Crossing Maneuver

Design Vehicle	Time Gap $\left(t_{g}\right)(s)$ at Design Speed of Major Road
Passenger car	6.5
Single-unit truck	8.5
Combination truck (WB 19 and WB 20)	10.5

Note: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3% or less. The table values should be adjusted as follows:

- For multi-lane highways: For left turns onto two-lane highways with more than two lanes, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.
- For minor approach grades: If the approach grade is an upgrade that exceeds 3%, add 0.1 s for each percent grade for left turns.

Table 9.9.6: Design Intersection Sight Distance - Case B2, Right Turn from Stop, and Case B3, Crossing Maneuver

Design Speed $(\mathrm{km} / \mathrm{h})$	Stopping Sight Distance (m)	Intersection Sight Distance for Passenger Cars Calculated (m)	Design (m)
20	20	36.1	40
30	35	54.2	55
40	50	72.3	75
50	65	90.4	95
60	85	108.4	110
70	105	126.5	130
80	130	144.6	145
90	160	162.6	165
100	185	180.7	185
110	220	198.8	200
120	250	216.8	220
130	285	234.9	235

Note: Intersection sight distance shown is for a stopped passenger car to turn right onto or to cross a two-lane highway with no median and with grades of 3% or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.

Figure 9.9.5: Intersection Sight Distance - Case B2, Right Turn from Stop, and Case B3, Crossing Maneuver (Calculated and Design Values Plotted)

